
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, No 3 Sep 2024

1

SQL Injection Attack Prediction in Web Applications Using

SVM, KNN, and Naïve Bayes

Dr. Vishnu Kumar Misra [1], G. Sushmitha [2] , J. Sharon David [3] , K. Harani [4]

[1] Professor, Department of CSE, Malla Reddy Engineering College for Women, Autonomous, Hyderabad

[2],[3],[4]Student, Department of CSE, Malla Reddy Engineering College for Women, Autonomous, Hyderabad

ABSTRACT:

Various dynamic web apps and websites are

now vulnerable to SQL injection, a major

online security risk. One kind of injection

attack is SQL Injection, which allows

malicious SQL queries to be executed into a

digital application that contains SQL

information. In order to circumvent

application security measures, attackers

utilize SQL injection requests or statements

that are supplied when a website or online

application has SQL vulnerabilities. An

attacker may even find ways to circumvent

authentication processes linked with

authorizing a web page or Internet

application, allowing them to access all of the

SQL data stored on that platform. The

suggested system's goal is to foretell when an

SQL injection scheme would hit a certain

server, assuming that an application is

installed from a specific source at a specific

moment. I am using the JMeter application to

handle this prediction experiment. The ability

to pre-measure, eliminate options, evaluate,

and feed deep learning models using network

logs to forecast SQLIA is now at your

fingertips.

INTRODUCTION

You are allowed to make copies of this work,

either digitally or physically, for personal or

educational purposes, without having to pay

anything. The only conditions are that the

copies must not be manufactured or

distributed for profit, and that they must

include this notice and the whole citation

above the first page. Any parts of this work

that do not belong to ACM must have their

copyrights respected. It is acceptable to

abstract with credit. It is necessary to get

previous particular permission and/or pay a

price in order to copy, republish, post on

servers, or disseminate to lists. used for evil

deeds when found by hostile assailants. A

denial of service (DoS) may occur when an

attacker crashes a critical application that is

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, No 3 Sep 2024

2

already operating. Sometimes the hacker

might even get complete control of the

system by escalating his privileges. To lessen

the impact that hostile hackers may have with

buffer overflow attacks, several safeguards

have been included into compilers and

operating systems over the years. Consider

two common security measures: data

execution prevention (DEP) and address

space layout randomization (ASLR). DEP

renders the call stack non-executable, thereby

preventing hackers from executing their

payloads. ASLR further makes it more

difficult for hackers to get the correct

addresses within their payloads by randomly

arranging the process's address space. On the

other hand, persistent enemies have shown

that these tactics are useless. As of right now,

writing secure code is your one option for

keeping hackers at bay. But even with

automatic and manual methods, it is difficult

to scan complicated programs for defects,

especially those written in a low-level

language like C. Even though Microsoft

invests around 100 machine years annually

into automated bug detection techniques,

their products frequently have multiple bugs

due to the complexity of pointer arithmetic

and the developers' relentless focus on

meeting deadlines. Keeping up with the

newest automated vulnerability detection

technologies is crucial for developers and

security experts, since attackers use software

to find program security gaps. A approach for

assessing C source code attributes to identify

functions as susceptible or non-vulnerable is

the contribution of this paper. We extracted

all functions from 100 applications that we

found on GitHub. From these functions, we

retrieved both simple and non-trivial

properties, such as function length of

sentence, nesting depth, string entropy, and

suffix trees. A table containing the feature

statistics was organized, with the data being

divided into training and test sets. The test

samples were classified using a variety of

classifiers, such as Naive Bayes, k-nearest

neighbors, k-means, neural network,

assistance vector machine, decision tree, and

random forest. The most effective

classification result was 75% for the trivial

features, 69% for the n-grams, and 60% for

the suffix trees. In Section 5, we go into

further depth about these findings. Section 2

covers some introductory ideas, Section 3

reviews the relevant literature, Section 4

describes the testing procedures in depth, and

Section 6 offers the final thoughts.

RELATED WORK

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, No 3 Sep 2024

3

Exploration of Communication Networks

from the Enron Email Corpus

Researchers are interested in the Enron

emails corpus for three reasons: (a) it is a

massive collection of emails from a genuine

company; (b) it spans three and a half years;

and (c) it is a large-scale collection. Our study

in this article adds to the preliminary social

network analytics examination of the

Houston email dataset. In this paper, we

detail our efforts to improve the Enron corpus

by adding relational data and removing

communication networks. In order to

discover important participants across time

and investigate the structural features of

Enron's networks, we use a number of

network analytic methods. The network was

denser, more centralized, and more linked

throughout the Enron crisis than it is during

normal times, according to our early data.

According to our data, there was greater

cross-functional contact among Enron

workers throughout the crisis, regardless of

employees' official roles. However, the top

executives remained close-knit, supported

each other, and interacted regularly the rest of

the business via extensive brokering.

Organizational crisis scenario modeling and

failure indicator research may both benefit

from the insights obtained via the studies we

conduct and suggest.

The reliability of metrics for object-oriented

design as measures of quality

We conducted an empirical investigation of

the set of object-oriented (OO) design metrics

proposed in (Chidamber and Kemerer, 1994)

and reported our findings in this article. Our

main objective is to validate these measures

for their ability to identify classes prone to

errors and, by extension, for their potential

utility as early quality gauges. This research

supplements that of Li and Henry (1993),

who also utilized the same set of criteria to

evaluate the frequency of class maintenance

modifications. For the purpose of our

validation, we gathered information on the

creation of eight information management

systems for medium-sized businesses that

met the same criteria. The eight projects were

created in C++ using the sequential

developmental model, a popular object-

oriented analysis and design paradigm. Here

we examine the benefits and downsides of

certain OO measures using data from

empirical and quantitative studies. It seems

that certain of the OO metrics proposed by

Chidamber and Kemerer may be used to

foretell which classes will be more prone to

errors in their early stages of development.

Not only that, but they outperform

"traditional" code metrics—which are only

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, No 3 Sep 2024

4

obtainable later in the software development

lifecycle—as predictors on our dataset.

RICH: Secure By Design Against Integer-

Based Attacks

In this paper, we detail the architecture and

implementation of RICH, an efficient tool for

identifying integer-based attacks on C

programs during runtime. When a variable's

value exceeds the tolerance of the machine

word that was utilized to materialize it, for as

when assigning a huge 32-bit int to a 16-bit

short, a common programming mistake

known as a C integer bug occurs [1–15]. We

prove that the well-known sub-typing theory

captures both safe and hazardous integer

operations in C. To protect against integer-

based assaults, the RICH compiler extension

converts C programs to object programs that

executes self-monitoring. After integrating

RICH into the GCC compiler, we ran tests on

several servers in the network and UNIX

utilities. The performance expense of RICH

is quite modest, averaging approximately

5%, even though integer operations are

ubiquitous. In addition to catching nearly

every one of the known issues, RICH

discovered two additional integer bugs.

Based on these findings, RICH is an effective

and lightweight tool for testing software and

a defense mechanism for runtime. Due to its

lack of modeling of some C features, RICH

has the potential to overlook certain integer

problems and produce error messages when

programmers intentionally employ integer

overflows.

Achieving a Practical Method for Statically

Identifying All C Buffer Overflows using

CSSV

One common cause of software faults in C

programs is incorrect string manipulation,

which may lead to vulnerabilities that viruses

can exploit. Introducing C String Static

Verifier (CSSV), a program that can

statically detect and fix any issue related to

string manipulation. As a cautious tool, it

discloses all such mistakes, even if it

sometimes triggers false alarms. The tiny

number of reported false alarms demonstrates

that software vulnerability may be

significantly reduced, which is a relief. By

dissecting each operation independently,

CSSV is able to manage big applications. In

order to achieve this goal, the technology

permits procedural contracts that are

confirmed. To ensure that the actual EADS

Airbus code was error-free, we built a CSSV

replica and tested it extensively. Applying

CSSV to another popular string-intensive app

revealed actual issues with few false

positives. Enhancing safety with lightweight,

extendable static analysis

Common types of implementation problems

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, No 3 Sep 2024

5

are often the target of security attacks.

Although developers have the ability to

identify and fix many of these issues prior to

software deployment, these problems occur

with alarming regularity. This is not due to a

lack of understanding within the security

community, but rather to the fact that

methods for avoiding them have not been

incorporated into software development. In

order to identify typical security flaws, such

as format string vulnerabilities and buffer

overflows, this paper details an extendable

tool that use lightweight static analysis.

METHODOLOGY

1) The first step is for new users to

register with the app.

2) After signing up, users may access

the application using the login page.

3) Load Dataset: Once the user logs

in, they can upload a dataset to the

program. From there, they can extract

all the labels and queries. After that,

they may remove stop words include

"and," "or," and "what" from all the

searches. The application will contain

core query terms when stop words are

removed. By using the Natural

Language Processing Toolkit, the

core word dataset will be processed.

4) Execute Ensemble Algorithms:

The processed dataset will be fed into

the Ensemble machine learning

technique for training a model. Then,

to determine accuracy and other

metrics, this model's predictions will

be applied to test data.

5) The fifth module is the confusion

matrix graph, which will show the

algorithm's prediction capabilities.

6) Vulnerability Prediction: This

module allows users to contribute

new TEST data queries, which are

subsequently analyzed by a machine

learning system to determine the kind

of vulnerability.

RESULT AND DISCUSSION

In above result python web server started and

now open browser and enter URL as

http://127.0.0.1:8000/index.html and then

press enter key to get below page

http://127.0.0.1:8000/index.html

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, No 3 Sep 2024

6

In above result click on ‘New User Register

Here’ link to get below sign up page

In above graph x-axis represents Predicted

Labels and y-axis represents True Labels and

then all different colour boxes in diagnol

represents correct prediction count and

remaining all blue boxes represents incorrect

prediction count which are very few. Now

click on ‘Predict Vulnerability’ link to upload

test data and predict Vulnerability

In above table in first column can see SQL

queries, XSS and RFI coding commands and

in second column can see predicted

vulnerability.

So by using above tool you can easily detect

all vulnerability and you can add NEW test

command in ‘testData.csv’ file which is

available inside ‘Dataset’ folder

CONCLUSION

Several conclusions may be drawn from the

thorough testing of function vulnerability

categorization using n-grams, suffix trees,

and trivial characteristics. First, using the

74% accuracy we achieved from "character

diversity "as a baseline criterion, it is clear

that extracting multiple n-grams does not

seem to provide strong classification results

at this time. We also found that the overall

outcome remained unchanged even when n-

gram combinations were manually picked (in

a way that would often be considered

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, No 3 Sep 2024

7

unlawful and result in overfitting). This

research does, however, provide solid proof-

of-concept for a crucial point: seemingly

insignificant traits may reveal a great deal

about a function's vulnerability. To make the

outcomes even better, this study may be done

in a few different ways. To start, it may be

easy to come up with more insignificant

qualities to look into. The second thing to

consider is trying out other n-gram selection

methods and other classification parameters

(beyond the defaults) in the SciKit package.

Third, although "character diversity" is

intriguing, it would be much more

illuminating to focus on the most crucial

characters (or strings). One approach would

be to do the character variety tests again after

pre-processing removes certain strings, such

as square brackets, curly brackets, ++, etc.

Lastly, it is feasible to evaluate whether the

methods discussed in this article may

effectively identify security flaws in

languages other than C.

REFERENCES

[1] Enron email dataset.

https://www.cs.cmu.edu/~enron/. Accessed:

2017-07-01.

[2] National vulnerability database.

https://nvd.nist.gov. Accessed: 2017-07-01.

[3] V. R. Basili, L. C. Briand, and W. L.

Melo. A validation of object-oriented design

metrics as quality indicators. IEEE

Transactions on software engineering,

22(10):751–761, 1996.

[4] D. Brumley, T.-c. Chiueh, R. Johnson, H.

Lin, and D. Song. Rich: Automatically

protecting against integer-based

vulnerabilities. Department of Electrical and

Computing Engineering, page 28, 2007.

[5] N. Dor, M. Rodeh, and M. Sagiv. Cssv:

Towards a realistic tool for statically

detecting all buffer overflows in c. In ACM

Sigplan Notices, volume 38, pages 155–167.

ACM, 2003.

[6] D. Evans and D. Larochelle. Improving

security using extensible lightweight static

analysis. IEEE software, 19(1):42–51, 2002.

[7] P. Godefroid, M. Y. Levin, and D.

Molnar. Sage: whitebox fuzzing for security

testing. Queue, 10(1):20, 2012.

[8] I. Haller, A. Slowinska, M.

Neugschwandtner, and H. Bos. Dowsing for

overflows: A guided fuzzer to find buffer

boundary violations. In USENIX Security

Symposium, pages 49–64, 2013.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, No 3 Sep 2024

8

[9] A. E. Hassan. Predicting faults using the

complexity of code changes. In Proceedings

of the 31st International Conference on

Software Engineering, pages 78–88. IEEE

Computer Society, 2009.

[10] S. Kim, T. Zimmermann, E. J.

Whitehead Jr, and A. Zeller. Predicting faults

from cached history. In Proceedings of the

29th international conference on Software

Engineering, pages 489–498. IEEE

Computer Society, 2007.

[11] D. Larochelle, D. Evans, et al. Statically

detecting likely buffer overflow

vulnerabilities. In USENIX Security

Symposium, volume 32. Washington DC,

2001.

[12] P. Lathar, R. Shah, and K. Srinivasa.

Stacy-static code analysis for enhanced

vulnerability detection. Cogent Engineering,

4(1):1335470, 2017.

[13] R. Ma, Y. Yan, L. Wang, C. Hu, and J.

Xue. Static buffer overflow detection for

c/c++ source code based on abstract syntax

tree. Journal of Residuals Science &

Technology, 13(6), 2016.

[14] R. Moser, W. Pedrycz, and G. Succi. A

comparative analysis of the efficiency of

change metrics and static code attributes for

defect prediction. In Proceedings of the 30th

international conference on Software

engineering, pages 181–190. ACM, 2008.

[15] R. M. Pampapathi, B. G. Mirkin, and M.

Levene. A suffix tree approach to antispam

email filtering. Machine Learning,

65(1):309–338, 2006.

[16] E. Penttilä et al. Improving c++ software

quality with static code analysis. N/A, 2014.

[17] H. Shacham. The geometry of innocent

flesh on the bone: Return-into-libc without

function calls (on the x86). In Proceedings of

the 14th ACM Conference on Computer and

Communications Security, CCS ’07, pages

552–561, New York, NY, USA, 2007. ACM.

[18] Y. Shin and L. Williams. An empirical

model to predict security vulnerabilities

using code complexity metrics. In

Proceedings of the Second ACM-IEEE

international symposium on Empirical

software engineering and measurement,

pages 315–317. ACM, 2008.

[19] J. Viega, J.-T. Bloch, Y. Kohno, and G.

McGraw. Its4: A static vulnerability scanner

for c and c++ code. In Computer Security

Applications, 2000. ACSAC’00. 16th Annual

Conference, pages 257–267. IEEE, 2000.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, No 3 Sep 2024

9

[20] D. Wagner, J. S. Foster, E. A. Brewer,

and A. Aiken. A first step towards automated

detection of buffer overruns vulnerabilities.

In NDSS, pages 2000–02, 2000.

